Control of gut development by fork head and cell signaling molecules in Drosophila
نویسندگان
چکیده
The alimentary canal of most animals can be subdivided into a fore- mid- and hindgut portion, each gut part possessing distinct physiological functions. The genetic basis underlying the formation of the different gut parts is poorly understood. Here we show that the Drosophila genes hedgehog, wingless and decapentaplegic, which encode cell signaling molecules, are required for the establishment of signaling centers that coordinate morphogenesis in the hindgut epithelium. The activation of these genes in the developing as well as in the foregut requires fork head, which encodes a transcription factor. Furthermore, we demonstrate that hedgehog and wingless activities in the gut epithelial cells are required for the expression of the homeobox gene bagpipe in the ensheathing visceral mesoderm. These results provide strong evidence that similar principles underlie Drosophila fore- and hindgut development, and that the genetic hierarchy of gut development might be conserved between Drosophila and vertebrates.
منابع مشابه
Comparative evaluation of NOTCH signaling molecules in the endometrium of women with various gynecological diseases during the window of implantation
Objective(s): NOTCH signaling pathway is well known for its role in cell fate, cell survival, cell differentiation, and apoptosis. Some of the NOTCH signaling genes are critical for endometrial function and implantation in animals and appear to play a similar role in humans. The purpose of the current study was to investigate the potential roles of some main components of the NOTCH family in hu...
متن کاملIntestinal Fork Head Regulates Nutrient Absorption and Promotes Longevity
Reduced activity of nutrient-sensing signaling networks can extend organismal lifespan, yet the underlying biology remains unclear. We show that the anti-aging effects of rapamycin and reduced intestinal insulin/insulin growth factor (IGF) signaling (IIS) require the Drosophila FoxA transcription factor homolog Fork Head (FKH). Intestinal FKH induction extends lifespan, highlighting a role for ...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملRole of caudal in hindgut specification and gastrulation suggests homology between Drosophila amnioproctodeal invagination and vertebrate blastopore.
During early embryogenesis in Drosophila, caudal mRNA is distributed as a gradient with its highest level at the posterior of the embryo. This suggests that the Caudal homeodomain transcription factor might play a role in establishing the posterior domains of the embryo that undergo gastrulation and give rise to the posterior gut. By generating embryos lacking both the maternal and zygotic mRNA...
متن کاملTLR2 and TLR4 Signaling Pathways and Gastric Cancer: Insights from Transcriptomics and Sample Validation
Background: Pattern recognition receptors, especially toll-like receptors (TLRs), as the first line of defense for pathogen detection, were found to be associated with H. pylori infection and gastric cancer (GC). However, the expression levels of TLRs, i.e. TLR2 and TLR4, as the main receptors sensed by H. pylori, still remain largely ambiguous. We aimed to investigate the patterns of key tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 58 شماره
صفحات -
تاریخ انتشار 1996